Analyzing Video Motions

نویسندگان

  • Ming-yu Chen
  • Huan Li
  • Alexander Hauptmann
چکیده

The Informedia team participated in the tasks of high-level feature extraction and event detection in surveillance video. This year, we especially put our focus on analyzing motions in videos. We developed a robust new descriptor called MoSIFT, which explicitly encodes appearance features together with motion information. For the high-level feature detection, we trained multi-modality classifiers which include traditional static features and MoSIFT. The experimental result shows that MoSIFT has solid performance on motion related concepts and is complementary to static features. For event detection, we trained event classifiers in sliding windows using a bag-of-video-word approach. To reduce the number of false alarms, we aggregated short positive windows to favor long segmentation and applied a cascade classifier approach. The performance shows dramatic improvement over last year on the event detection task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Wavelet Based Spatio-temporal Method for Magnification of Subtle Motions in Video

Video magnification is a computational procedure to reveal subtle variations during video frames that are invisible to the naked eye. A new spatio-temporal method which makes use of connectivity based mapping of the wavelet sub-bands is introduced here for exaggerating of small motions during video frames. In this method, firstly the wavelet transformed frames are mapped to connectivity space a...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

روشی جدید برای اختفای خطا در فریم‌های ویدئو با استفاده از شبکه‌ عصبی RBF

Transmission of compressed video over error prone channels may result in packet losses, which can degrade the image quality. Error concealment (EC) is an effective approach to reduce the degradation caused by the missed information. The conventional temporal EC techniques are always inefficient when the motions of the video object are irregular. In this paper, in order to overcome this problem,...

متن کامل

Recovering and Analyzing Wide Range Human Motions Based on Mobile Cameras

This paper proposes a technique for recovering 3-D wide range human motions employing a set of uncaliblated mobile cameras. This paper also claims availability of such 3-D recovery in analyzing human motions. Three video cameras mounted on a mobile frame track and capture a human motion in a large field from three different directions. Feature points on the subject are registered in a measureme...

متن کامل

Informedia @ TRECVID 2009: Analyzing Video Motions

The Informedia team participated in the tasks of high-level feature extraction and event detection in surveillance video. This year, we especially put our focus on analyzing motions in videos. We developed a robust new descriptor called MoSIFT, which explicitly encodes appearance features together with motion information. For the high-level feature detection, we trained multi-modality classifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009